

Patented

What’s wrong with SAAS login?

Nikos Leoutsarakos

Tiny bio
Nikos has a Physics background and a M.Sc. in Computer science from McGill University in Montreal, Canada,
where he lives with his wife and two children. He has been publishing and developing systems in the areas of
cryptography, wireless/mobility and digital signatures since 1994.

Nikos can be contacted at NIKOS@ZEROPASSWORDS.COM

mailto:NIKOS@

Prelude

You do not have to be a data scientist to read this paper. If you use a browser to visit

your favorite Websites, meet your social media friends online, and check your email daily,

this paper is for you.

Let’s start by asking: “what happens when you use a third party to help you login to a

Website?”

Companies listed above are part of a group of companies that promote a SAAS user

authentication service to Websites for a fee (see table, column E1). SAAS login is

implemented using a smartphone based PKI challenge-response protocol and Trust

Tokens. The service consists of three software applications (see Table). The first one

resides at the Website and executes the activities of column C. The second one resides on

the service company’s cloud (Authentication Cloud) and executes the activities of column

E. The third one is a mobile app on subscriber’s smartphone (column G).

While on the surface SAAS login seems to work, a closer analysis reveals a plethora of

issues that rank from inconvenient to grounds for a law suit. I personally found 22

problems with SAAS login.

1. Website2 does not authenticate its users. A third party does. Authentication clouds

(companies of column E) aspire to become sentinels to Websites and authenticate users

on their behalf. “All a Website has to do is outsource the login process to us for a fee”,

they advocate.

2. Website must “obey” TrustTokens. Should a positive TrustToken arrive in Step 5,

Website has no choice in Step 6 but to login the username of Step 1 and expose his

private content and sensitive information on the browser. Website relies exclusively on

1
 Processes employed by companies of column E may vary from one another but they all execute the steps described in the

table above
2
 Website is indicative of online service, online game, remote hardware, etc., any computing system that controls access to

it (not open to public)

the validity and trustworthiness of received TrustTokens. In cases of compromised

TrustTokens, is a Website liable?

3. Steps 3-5 are out of the control of Websites. In other words, Website is agnostic to

user authentication process(es) employed by companies in column E. In case of

wrongful logins, is a Website liable?

 A. B. C. D. E. F. G.

 User
(browser)

Network
(Man-In-The-

Middle)

Website Network
(Man-In-The-

Middle)

User
Authentication

Cloud

Network
(Man-In-

The-Middle)

User
(phone)

1. User claims
an identity


Send

“username”

2. Translate
Username to

UserID


Send “UserID”

3. Choose a secret
S (random or

not)
send it to

UserID’s phone
and keep it


Send S

4.
Send S’


Sign S with
private key
S’ = Ppr(S)

5. Send
TrustToken
(e.g. OAuth

2.0)


Retrieve
UserID’s public
key and use it to

verify
Ppub(S’) = S

(?)

6. View
Webpages

Send
Webpages


Received
TrustToken is
proof that
“username” was
authenticated

4. Website must trust authenticator. A malicious or compromised company of column

E can get a user to sign “anything” in Step 3. User better have a different private key

on his phone to sign contracts and approve money transfers! In cases of misused user

private-keys, is a Website liable?

5. Step 5 is a “single point of failure” for Websites. What if TrustTokens stop

coming? How will companies in column E compensate their customer-Websites for down

time? They won't. They will ask Websites to have a second (backup) way to login. A

dual (or multi) user authentication system will quickly get out of sync; suffer from

security vulnerabilities; and introduce user authentication conflicts which can be

exploited by hackers.

6. Users must register twice. Users registered at a Website must also register with

clouds of column E. This inherent stipulation causes a logistics nightmare for users, and

a logistics and cost nightmare for Websites. Users must download all mobile apps of

present and future companies-clouds of column E to have the freedom to login to any

Website, and Websites must deploy, pay and be ready to interact with all present and

future companies-clouds of column E if they do not want to disappoint users.

7. Databases of Step 2 need be maintained by the Website. As users register onto

or unregister from a Website an automated process must be introduced to add or

remove user entries from the databases of Step 2 kept at the Website (one database

per company-cloud of column E). In case of wrongful logins, or inability to login, due to

the fact that databases of Step 2 are out of sync with the actual database of registered

users, is a Website liable?

8. Websites cannot maintain login-transaction logs. Outsourcing login to a cloud

prevents Websites from interacting with their registered users directly. Consequently, it

would be futile for Websites to keep track of login transactions which are based

exclusively on TrustTokens. Such logs would not be admissible in court of law because

they do not contain proofs of user identities, nor do they contain proofs of users’ intent

to login. In cases of unlawful logins Websites cannot defend themselves in court of law.

9. User authentication clouds cannot maintain login transaction logs. Clouds of

column E serve many Websites and keeping track of who logged in, to which Website,

and when, even if it is done discreetly, would be a direct violation of users’ and

Websites’ privacy.

10. Users have no proof. Users have no record, receipt, or other type of proof in their

phones, which would legally bind them and their smartphones to specific login

transactions to specific Websites. In case of unlawful logins users cannot defend

themselves in court of law.

11. The authentication cloud can be bypassed. A Man-In-The-Middle can replace the

“TrustToken” in Step 5 or 6 to his benefit. The end result will be MIM controlling the

decisions in Step 6 totally undetected. In other words, the user authentication Steps

3-5 executed by the authentication cloud become irrelevant.

12. The authentication cloud can be compromised. A Man-In-The-Middle can replace

the “UserID” in Step 2 with his; grab a copy of S in Step 3; and replace S’ in Step 4

with S signed with his private key. The end result will be MIM controlling the decisions

in Step 5 totally undetected.

13. Website’s database or process can be compromised in Step 2 so that one or

more usernames translate to a malicious UserID. The end result will be UserID-

imposter and his phone approving other usernames’ requests to login, and thus

gaining access to their private content and sensitive information.

14. Cloud database or process can be compromised in Step 3 so that communication

is established with a malicious phone instead of UserIDs’ smartphones. The end result

will be an imposter and his phone approving login requests of other users, and thus

gaining access to their private content and sensitive information.

15. Call forwarding. If the database in Step 3 contains phone numbers used to establish

communication with phones, there is no need to compromise it. An imposter need only

take a copy of the database and then take control by simply call-forwarding users’

phone numbers to his. The end result will be imposter and his phone approving login

requests of other users, and thus gaining access to their private content and sensitive

information.

16. The Achilles heel. Verification in Step 5 compares S from Step 3 with S resulting

from decrypting S’ with public key in Step 5. An imposter can compromise the Boolean

outcome of this comparison, and hence the generation of TrustTokens, to his benefit.

17. Worldwide user authentication authority. Companies of column E promote a

SAAS model of user authentication. Each company strives to become a central

worldwide user authentication authority. In practice, these companies have designed,

implemented and deployed architectures where “central” means cloud and “worldwide

authority” means authenticate the users of the world.

18. Outsourcing requires trust. Websites will need to trust one or more clouds of

column E to authenticate users on its behalf. It is likely that for non-technical reasons

a Chinese, Russian, or German Website for example, may not want an American

company-cloud to have such power over its users.

19. Single point of failure. SAAS model of user authentication invites professional

hackers because it pays. Worldwide centralized login will create new worthwhile targets

and attacks will be diverted from Websites to authentication clouds where hackers will

attempt to compromise verification processes, network packets and the new enormous

central databases. Except this time, instead of affecting the registered users of one

Website hackers can cause problems to thousands of Websites and hundreds of millions

of users.

20. No favoritism. The software application (or applications, one per cloud) that resides at

the Website and executes Step 2 must be able to communicate securely with all

present and future user authentication clouds. Websites have no choice but to

constantly update this application if they want to provide to their users the freedom to

choose which authentication cloud they want to be authenticated by. However this

creates a logistics problem for Websites with users switching from cloud to cloud, new

clouds appearing, old clouds disappearing, and each cloud stipulating its own

communication requirements due to lack of standards. In addition, authentication

clouds suffer from the flip side of this logistics problem. They need to make sure that

millions of Websites have their latest software application installed and running.

21. User nightmare. The mobile application (or applications, one per cloud) which is

running on user smartphones and executes Step 4 must be able to communicate

securely with present and future user authentication clouds. Users have no choice but

to constantly update their mobile application if they want to login to any Website on the

Web. However, this creates a logistics problem for users who cannot be authenticated

unless they go through the registration process of new clouds as they appear, or re-

register with existing clouds if Websites demand it.

22. Recall username. In Step 1 user claims an identity. In practice, the user is asked to

type in a username, or a code that he is known by at the Website. Consequently,

username fatigue, i.e. the memory taxing task of recalling and entering the correct

username at the correct Website remains user’s responsibility.

Conclusion

Majority of the issues above are caused by the SAAS architecture of user authentication.

In other words, outsourcing user authentication to a cloud is the problem. The very idea

of outsourcing the most sensitive part of a Website, or of an online service, to a third

party is shown here to be the root of most objections listed above. Proliferation of SAAS

login with PKI will face resistance from Websites and from the public, more for political

and logistics reasons (see 17 to 22 above) and less because of its technology

shortcomings and the way it works (see 2 to 16 above).

It is unavoidable that Websites which decided to outsource their login process will soon

come to harsh realizations when unwanted or unlawful access transactions occur and

digital and physical valuables are lost or stolen. Who is to be blamed then? Users will

blame the Websites, the Websites will blame the authentication clouds and the clouds will

blame Websites and/or users. Without access transaction logs and proofs of user

approvals/disapprovals, it will be as hard, if not harder than it’s been with passwords, to

resolve disputes. At least with passwords all matters were between a Website and its

registered users.

In a separate document we analyze a non-SAAS PKI login process, i.e. a process that

does not involve a third party.

